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I. INTRODUCTION  
The alleged energy challenge and opportunity posed by evermore bit generation is widely recognized [1]-

[5]. Computing (processing and storage) is presently not yet, but may within a decade rise to the same share of 

global electricity use as air conditioning and lighting, i.e. >10%. Generally computing consists of processing 

computations and storage of bits. This would make computing one of the most important users of electricity on a 

global scale. However, admittedly the fields of computing primary energy and electricity footprint estimations 

are currently characterized by ideas which are not provable on the global scale. 

The entanglement of the energy trends in the Complementary Metal-Oxide Semiconductor (CMOS) logic 

chip world is a very challenging task. The memory chips are similarly difficult in this regard. The total global 

operational primary energy use of IoT semiconductors is projected to decrease significantly (from 118 TWh to 1 

TWh between 2016 and 2025) with the development of smaller transistor size, low-power devices, and faster 

wireless data communication technology [6].  

Additionally, video streaming is one of the most popular digital services driving demand for traffic and 

eventually communication infrastructure [7] [8] [9]. Combinations of cryptocurrency mining, Internet of Things 

(IoT), Artificial Intelligence (AI), and Virtual Reality (VR) are drivers evermore. 

 

I.1 Overall computing energy and electricity 

Previously most research and predictions have looked at the electricity use. This prediction will focus on 

primary energy. 

Data centers do processing and storage both. Moreover, users’ behavior may increase the data center 

electricity use from 292 TWh in 2016 to just 353 TWh in 2030 [8]. However, the presupposed end of Moore’s 

law - and rise of IoT – would cause data center electricity use going up to 1287 TWh in 2030 [8], much closer to 

the best case scenario in [1] and [2] than 353 TWh. 

Exascale computing and beyond requires a shift from considering only computation time when optimizing 

code, to also consider more efficient use of electric energy [10]. 

The optimistic scenario from 2030 in Fig.1 requires new energy-efficient computational concepts. 

 

Abstract: This research estimates the associated primary energy consumption for different combinations of 

dynamic switching energy for storage (J/bit), for processing (J/computation) and global computation 

intensity (computations/s). Bottom-up extrapolation is used. With ≈10 ronnacomputations/s in 2050, the 

J/computation should improve ≈36% per year from 2024 to 2050 to ≈50 attoJ/computation to keep 

computing processing energy flat. Also the dynamic switching energy needs a similar reduction rate to keep 

the computing processing energy flat. Hence, a paradigm shift is required to reduce the power used by 

computing. Technology could keep the use of primary energy flat if global computations and stored data 

grow slower than expected and especially if 50 aJ/computation and 1 nJ/bit can be delivered in 2050. 
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Figure 1. Actual and possible trends for primary energy for computing and total global from 2010 to 2040. 

 

So is it within reason that Bitcoin (BTC) could use 761 TWh electricity already in 2030, i.e. some 2000 

TWh primary energy which would be around 10% of computing energy? 21000 TWh computing primary energy 

corresponds to ≈8000 TWh electricity in 2030 which seems very unreasonable. 8000 TWh is near the expected 

case scenario for 2030 for communication technology in [1]. Such high predictions are not consistent with 

rapidly declining power use in line with aims of processor producers [6]. 

However, Fig. 2 shows an estimation based on the sum of global accumulated data growing more than 

4000 times between 2025 and 2050, the electricity intensity for handling the data improving on average 15% per 

year from 0.01 kWh/GB in 2025 to 1.8×10
-4

 kWh/GB in 2050. Anyway, the top-down electricity intensity for 

the internet should not be applied to the accumulated stored bits. Another intensity is J/transistor (dynamic 

switching energy) for which [3] assumed 2.88×10
-21

 (the minimum energy required to write one bit, i.e. the so 

called Landauer limit) in the future applied to writing and storing each bit of information. The processing 

(J/computation) and the storage (J/bit, J/transistor) are here assumed to be two separate energy parameters by 

which the total computation energy can be estimated. In 2007 the global computations/s were ≈2.25×10
20

 and the 

accumulated stored data were ≈2.83×10
21

 bits. The growth rate for these are expected to be ≈56% and ≈40%, 

respectively. 

Interestingly, for 2020 and 2030 the best case data center J/bit from [2] gives similar results as [3] for 

information energy totals. 

The difference between the latest chips (≈5470 fJ/computation) and plasmoid graphene (≈0.5 fJ/bit) is 

around 10000 times. Another combination is between ≈490 fJ/computation and future superconduction (≈0.024 

fJ/bit) resulting in around 20000 times improvement potential. For some chips the improvement potential could 

be 100000 in between 2024 and 2050. How far will 0.5 fJ/computation and 0.5 fJ/bit storage writing go in 

relation to the global computing primary energy? 
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Figure 2. Actual and possible trends for data and electricity use towards 2050. 

 

Here some other approaches will be used to estimate the trends for 2050.  

  

A. Trends for J/computations 

Neural network design using attojoules per bit [11] has been proposed. A prototype microprocessor has 

been presented using superconductor devices that are about 80 times more energy efficient (≈0.186 

pJ/computation) than the state-of-the-art semiconductor devices (≈15 pJ/computation) found in the 

microprocessors of today's high-performance computing systems [12].  

In 2022 certain computer systems obtained 15.95 pJ/computation [13]. In 2024 Graphical Processing Units 

(GPUs) used for processing in data centers can achieve 5.47 pJ/computation. 0.49 pJ/computation in 2025 has 

also been proposed. 

 

B. Trends for dynamic switching energy J/transistor 

It has been demonstrated experimentally that the Landauer bound (primary energy required to erase a 1-

bit memory), 2.88 zJ/transistor (dynamic switching energy), can be reached with a very high accuracy in a short 

time [14]. Moreover, 409 zJ/transistor has been predicted [15] for CMOS 3D design. 

A 1-trit ternary full adder designed with an anti-ambipolar switch device shows a power–delay product 

performance of around 122 aJ [16]. The power consumption of such a circuit is 7 times lower than a reference 

circuit [16].Likely [12] chip manufacturers may be ahead of roadmaps of 1000 zJ/transistor in 2030 [15], and the 

J/transistor (dynamic switching energy) is correlated to the power use of chips. 

Synchronization of large spin Hall nano-oscillator (SHNO) arrays is an approach toward ultrafast non-

conventional computing paving the way for human-like computers with high energy efficiency [17]. It is not 

clear if SHNO is close to the Shannon-von Neumann-Landuaer (SNL) limit. 

 

C. Bitcoin energy intensity trends 

Bitcoin (BTC) is a digital asset which uses energy/hash.  A hash is a function that converts an input of 

letters and numbers into an encrypted output of a fixed length.  These hashes are here assumed to add to the 

global computations growth, i.e. the growth of  in (7). BTC energy use estimations and 
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modelling are important as they suggest that contemporary energy use predictions of data center and blockchain 

technologies have been underestimated as the BTC effect is excluded. 

 Table 1 assumes that 900 BTC was mined per day 2019 to 2021, that 400 BTC will be mined per day 

from 2022 to 2035, and that the annual electricity intensity improvement of TWh/BTC is 20% per year from a 

2021 baseline of 103.73 TWh. 

 

Table 1. Projections for electricity used to mine bitcoins 2022 to 2035. 

Year 

TWh electricity 

used 

BTC mined of 21 

million TWh/BTC 

2019 45.75 18057343 1.39×10
-4

 

2020 58.49 18385843 3.88×10
-5

 

2021 130.73 18714343 2.20×10
-4

 

2022 276.37 18860343 9.98×10
-4

 

2023 392.89 19006343 7.98×10
-4

 

2024 486.10 19152343 6.38×10
-4

 

2025 560.67 19298343 5.11×10
-4

 

2026 620.33 19444343 4.09×10
-4

 

2027 668.05 19590343 3.27×10
-4

 

2028 706.23 19736343 2.62×10
-4

 

2029 736.78 19882343 2.09×10
-4

 

2030 761.21 20028343 1.67×10
-4

 

2031 780.76 20174343 1.34×10
-4

 

2032 796.40 20320343 1.07×10
-4

 

2033 808.91 20466343 8.57×10
-5

 

2034 818.92 20612343 6.86×10
-5

 

2035 826.92 20758343 5.85×10
-5

 

 

In Table 1, based on the trend from 2019 to 2021, the TWh needed to mine BTC in 2022 is derived as 130.73 

TWh+400 BTC/day×365 days/year×2.20×10
-4

TWh/BTC×0.8
1
 × (2.20×10

-4
/3.88×10

-5
) = 276.37 TWh. 

The electricity needed to mine BTC in 2023 is derived as 276.37 TWh+400 BTC/day×365 days/year×2.20×10
-

4
TWh/BTC×0.8

2
 × (2.20×10

-4
/3.88×10

-5
) = 392.89 TWh. 

The BTC electricity use prediction in Table 1 will be compared to later findings in this research about the 

electricity needed to sustain the BTC network. 

It was recently estimated that BTC mining energy use in 2024 in China will be 296.59 TWh [18].  This 

suggests that the calculation model for Table 1 is reasonable.  

For estimating the energy needed to sustain the BTC network, once the BTC have been mined, another 

estimation technique can be used based on the hash rate, i.e. total number of hashes per second needed to sustain 

the BTC network and the best available J/hash. The lowest BTC network power use in 2018 at the average hash 

rate 26 million terrahashes (quintillion) per second is estimated to 2.55 GW [19], e.g. 0.098 nJ/hash in 2018 for 

bitcoin technology. The hash rate (humber of hashes per second) is expected to rise and the J/hash is expected to 

decline. Additionally, the number of integer operations per hash is also expected to rise. In February 2022 the 

bitcoin hash rate was 248.11 exahashes/s [19], i.e. the average global hash rate may have grown 76% per year 

between 2018 and 2022.  Additionally, it has been reported that one of the latest mining chips will achieve 55 

J/Terrahash, i.e. 0.055 nJ/hash [20]. Bitcoin miners used some 0.034 nJ/hash in 2022. Consequently, the best 

available J/hash was reduced 23% per year between 2018 [19] and 2022 [20]. The actual bitcoin mining 

efficiency seems to have been improved 23.4% per year from 2018 to 2021, 0.098 to 0.044 J/Ghash [20]. The 

improvement rate is worse than the theoretical prediction of 36 in 2018 to 6.15 pJ/computation in 2022, i.e. 36% 
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per year [15],[21]. Still, the J/hash follows well the improvement trends reported by chip manufacturers for 

J/computation.  

The main aim of the present research is to outline which path the energy consumption of computing is 

following and likely is about to follow.  

Compared to previous investigations the present research will add the storage energy separately and 

expand the temporal scope from 2030 to 2050. 

The principal conclusion is that 24 aJ/computation for processing - and dynamic switching energy of 

0.003 zJ/transistor and 1 nJ/bit for storage – will be enough for reduced energy use of computing in 2050 

compared to 2024. The rebound effect of software is implicitly included in the modelling via overestimation of 

global computations per second and stored bits. 

The trends indeed look very promising for dynamic switching energy and energy use per computation. 

However, what trajectory is required to keep the computing electricity use flat between 2024 and 2050? 

 

II. THEORETICAL FRAMEWORK  
(1) and (2) show definitions of the dynamic switching energy (Etr) of processor architectures and (3) the 

so called Efactor. (4) and (5) show how the power use of a chip and the global power use of chips used in global 

computing is estimated. (6) and (7) show how the global energy use from computing related to processing is 

estimated from the power use of chip and its FLOP/s and annual computations per second. 

 

     (1) 

     (2) 

    (3) 

  (4) 

   (5) 

     (6) 

  (7) 

 

Where 

= Dynamic switching energy (J/transistor). 

 = Load Capacitance (As/V) 

 = Voltage across the gate, (V) 

 = switching probability. 

= Clock frequency (1/s) 

= Leaking current drawn by each switch in the off-state (A) 

= Dimensionless primary energy/enthropy factor. 

= Boltzmann’s constant (J/K). 

= Temperature at which the transistor is operating (K). 

= Power consumption of one chip (W), energy. 

= Number of transistors in one chip (#). 

 = Computational use effectiveness.  

= Power used by global computing (W) 

= Number of chips running at the same time globally doing computing (#). 

= Power use effectiveness of data centers and alike. 
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= energy use per floating point operation, energy use per computation, energy use per hash 

(J/computation). 

= floating point operations per second performance per chip (computations/s). 

 = annual energy use for computing related to processing (J/year). 

= global computations done per second, (computations/s). 

 Figs. 2a and 2b show the relation between Etr and feature size as estimated from 1989 to 2022. 
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Figure 2a. Dynamic switching energy (zeptoJoule) as function of feature size (nm) from 1989 to 2024. 
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Figure 2b. Dynamic switching energy (zeptoJoule) as function of feature size (nm) from 2008 to 2024. 

 

Figure 2b suggests that from around 2008 the dynamic switch energy has improved faster than suggested by the 

historical trend. 
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There are only two practical ways today for lowering  of traditional CMOS: either changing the 

physics of the transistor, with significant effect on voltage lowering (Equation 1), or operating at much lower 

temperatures (cryogenic electronics) (Equation 2) [24]. 

In 2007   was ≈250 attoJoule (aJ), and currently about ≈11 aJ and the prediction is ≈1 aJ by 2030 

[15]. Table 2 suggests that the semiconductors are already better performing much better than ≈9000 

zeptoJoules/transistor predicted for 2020 [15]. 

 

Table 2. Theoretical estimations of historical computation power metrics. 

Year Feature 

size (nm) 

 

(billions) 

 

(Ghz)  

(GigaFL

OP/s) 

p (W) 
 

(pJ/co

mputa

tion) 

 

(zeptoJoule/tra

nsistor) 

2017 14 4.4 0.65 403.2 15 37.2 4767 

2020 7 26.8 2.2 20700 300 14.49 4626 

2020 7 5.99 4.4 546 90 164.84 3104 

2020 7 30 2 20500 330 16.10 5000 

2023 4 80 1.76 25610 700 27.33 4533 

2024 4 80 1.76 128050 700 5.47 1743 

 

Moreover, Table 2 even suggests that there may already be chips which perform much better than earlier 

roadmaps for 2030 of 1000-3300 zeptojoule per transistor for [15]. 

The present research aims to clarify and simply the results in[15],[22] by removing assumptions about 

transistor per instruction, by focusing on published and estimated , ,  and 

performance for microchip processors, and by interpreting global estimation of instructions/second 

[23] as computations/second.  

Clearly  is increasing while  and  are decreasing. 

Performance metrics for different semiconductor technologies and the corresponding use in 2030 are 

herein modelled. Table 3 shows different processor architectures promises for 2022, 2025, 2030, 2040 and 2050. 

 

Table 3. Theoretical predictions of computation power metrics 2025, 2030, 2040 and 2050. 

Processor 

architecture 

Yea

r 

Feature 

size 

(nm) 

 

(billions) 

 

(Ghz)  

(GigaFL

OP/s) 

 

(W)  

(pJ/comp

utation) 

 

(zeptoJo

ule/trans

istor) 

 2025 5 50 2.2 57600 28 0.49 231 

[15] 2030 5 80 5 57600 180 3.125 409 

[15] 2030 1.5 80 5 57600 440 7.63 1000 

[15] 2030 1.5 80 5 57600 191 3.31 434 

[15] 2030 1.5 80 5 57600 77 1.33 175 

         

[12] 2030 1.5 80 5 57600 10.45 0.181 24 

[15] 2030 1.5 80 5 57600 1.35 0.023 2.88 

Reversible 2030 1.5 80 5 57600 0.08 0.0014 0.182 

Superconducting 2030 1.5 80 5 57600 0.001

4 

0.000024 0.003 

Plasmoid 

graphene 

2040      0.0005  
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Superconducting 2050      0.000024 0.003 

 

The controversial and diverging hypotheses concern to which degree the total global generated bits/year 

and computations/s are on an unsustainable path when compared to the paths of J/computation and J/transistor 

and J/bit. The main aim of the present research is to outline which paths the energy consumption of computing 

are following and are most likely about to follow. The principal conclusion is that the likely achievable 

 (J/computation) will not be enough for a flat energy use of computing in 2050 compared to 

2024. However, eventual increase of the energy use of computing will likely be driven by the number of 

computations and stored bits, and not by lack of performance of the hardware. 

 

III. RESULTS 
III.1 Processing primary energy 

Table 4 shows some extrapolations done by using two diverging trends, the increase of 

and the decrease of . 

 

Table 4. Theoretical estimations of computation energy use 2007, 2020, 2030, 2040 and 2050. 

 

Year 

 

(Exa 

computations/s) 

 

(zJ/transistor) (TWh) 

2007 195 250000 216 [25] 

2020 ≈42456 4626 870 

2030 2671474 1000 11837 

2030 2671474 231 2734 

2040 167771905 

2.88 (Landauer 

limit) 2141 

2040 167771905 0.182 (reversible) 135 

2050 10546503870 25.5 1190631 

2050 10546503870 

2.88 (Landauer 

limit) 134580 

2050 10546503870 0.182 (reversible) 8505 

2050 10546503870 

0.003 

(superconducting) 149 

 

Table 4 suggests that something like reversible computing in 2040 and superconducting in 2050 are 

sustainable from a power standpoint. 

Table 5 shows some estimations for  as a result of variable  and fixed 

 in 2020, 2024, 2030 and 2040 and 2050.  

For the same value of , the values for in 2030 are similar for = 1000 

zJ/transistor (Table 4). 

 

Table 5. Theoretical estimations of computation primary energy use trends 2020 to 2050 

Year Comment GFLOP/s/W 
 

(pJ/computation) 

 

Computations/s 

 

(TWh) 

2020 
Overestimates 

TWh 
69 14.49 4.89×10

22
 6213 

2024 
Overestimates 

TWh 
183 5.47 1.12×10

23
 5369 
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2030 

What it takes at 

least to reduce to 

2024 level TWh 

5000 0.2 3.08×10
24

 5396 

2040  3.1×10
5
 3.2×10

-4
 1.93×10

26
 5410 

2050 

What it takes at 

least to reduce to 

2024 level TWh 

2×10
7
 5×10

-5
 1.22×10

28
 5343 

 Bitcoin network primary energy use 

Year 
Energy power 

(GW) 
Ghashes/s/W 

pJ/hash (energy 

efficiency) 
Global BTC hashrate 

TWh 

(primary 

energy) 

2020 3.96 22.7 44 90×10
18

 hashes/s [19] 35 

2030 21.3 2326 0.43 4.96×10
22

 hashes/s 187 

2040 13.7 2000000 0.0005 2.73×10
25

 hashes/s 120 

2050 362 4.17×10
7
 0.000024 1.51×10

28
 hashes/s 3175 

 

The results for BTC in Table 5 is much different from Table 1 which uses a top-down approach to 

estimate the electricity use of BTC mining. Table 5 suggests that the lowest BTC network power use in 2020 at 

the average hash rate 90 million terrahashes (quintillion) per second is estimated to 3.96 GW. In 2030, the 

lowest BTC network power use at the average hash rate 49600 million terrahashes (quintillion) per second is 

estimated to 21.328 GW. For 2040 it is assumed that 0.5 fJ/hash can be achieved and in 2050 the 0.024 fJ/hash 

is accomplished with superconducting computing. 

 

III.2 Storage primary energy 

Data centers do both processing and storage. Table 6 shows how the energy estimation technique from [2] 

can be used to generate numbers for storage primary energy. The J/bit in [2] for data centers are multiplied by 

2.7 to arrive at primary energy. It is assumed that bits accumulated in the data centers can use the average energy 

intensity of the data centers to estimate the storage energy. 

 

Table 6. Primary energy use trends 2024,2030,2040 and 2050 for data storage based on data center energy 

intensity. 

Year  Bits accumulated in data centers  J/bit i data centers, [2] 
(TWh)/year, 

primary energy 

2024 1.23×10
24

 6.32×10
-6

 2157 

2030 9.79×10
24

 3.16×10
-6

 8602 

2040 2.57×10
26

 1.78×10
-7

 12719 

2050 6.75×10
27

 1.00×10
-8

 18808 

 

Table 7 shows how Fig.2 in [3] is used as an alternative energy estimation technique for storage primary 

energy. [3] argues that the minimum energy to write a bit is 2.88 zJ. Fig.2 in [3] has log10 for power on the Y-

axis and year on the X-axis in which 10 corresponds to 2030. From Table 2   in 2020 is 4626 zJ. Hence the 

power use for information creation (TW) which corresponds to X=10 can be identified as Y=10
-5 

. 10
-

5
corresponds to 0.08 TWh which is too small. Instead a correction factor is used consisting of the relation 

between the average   and the minimum . The correction factor is multiplied with the TW in column three 

as shown in Table 7. 
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Table 7. Primary energy use trends 2024,2030,2040 and 2050 for data storage based on power for information 

creation and switching energy relation. 

Year  , zJ 
 Power (TW) for information creation based on 

[3] 

(TWh)/year, primary 

energy, TW×8760 

hours/year 

2020 4626 10
-5

×4626/2.88=0.016 0.016×8760=140 

2030 231 10
-2.5

×231/2.88=0.25 2221 

2040 174 10
-2

×174/2.88=0.6 5292 

2050 2.88 10
0
×2.88/2.88=1 8760 

2050 10 10
0
×10/2.88=3.47 30416 

2050 0.182 10
0
×0.182/2.88=0.063 553 

2050 0.003 10
0
×0.003/2.88=0.001 9.1 

 

III.3 Overall combined results for computing primary energy 

Fig. 4 shows the best case for primary energy consumption for computing in relation to the global use. 
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Figure 4. Primary energy trends 2024, 2030, 2040 and 2050 in a best case scenario. 

 

The share of global primary energy will rise from 6% to 9%. 

 

Fig. 5 shows the worst case for primary energy consumption for computing in relation to the global use. 

 



 

 International 

   Journal 
Of Advanced Research in Engineering & Management (IJAREM) 

ISSN: 2456-2033 || PP. 01-13 

 

 
| Vol. 10 | Issue 04 | 2024 | 11 | 

5369 2157 7526

135279

13221

2222

15442

164724

39650

5293 44942

200557

56872

30417

87289

244446

0

50000

100000

150000

200000

250000

300000

Processing, worst Storage, worst TOTAL computing Global primary energy

Worst case primary energy trends for information processing and storage (TWh)

2024 2030 2040 2050
 

Figure 5. Primary energy trends 2024, 2030, 2040 and 2050 in a worst case scenario. 

 

The share of global primary energy rise from 6% to 36%. 

 

Fig.5 implies that the improvement of the average J/computation for processing is highly important for 

the total energy use. Improvement rate from 2020 to 2024 continuing to 2050 is not enough.  

 

IV. DISCUSSION 
An intense discussion is ongoing about the future energy use of computing.  

 

For processing, the growth rate for computations/s (56% per year) seems likely to continue between 2024 

and 2050. For storage, the growth rate (40% per year) for accumulated bits seems likely to continue between 

2024 and 2050.  

 

A computational primary energy use under control in 2030 may require 0.2 pJ/computation (5 

Terraoperations/s/W) with   = 2.54 Yottacomputations/s. 

 

A computational primary energy use under control in 2040 may require 0.00032 pJ/computation (3125 

Terraoperations/s/W) with   = 159 Yottacomputations/s. 

 

A computational primary energy use under control in 2050 may require 0.05 fJ/computation (20000 

Terraoperations/s/W) with   =  10091 Yottacomputations/s. 0.05 fJ/bit is below plasmoid 

graphene technology in optical and similar to superconducting computing 0.024 fJ/bit. 

 

Superconducting values for  ≈ 0.003 zJ/transistor will be enough to guarantee a reduction of 

.  

 

If the reduction trend between 2020 and 2024 continues (21.6% per year) until 2050 for  

the computing energy use for processing will increase 190 times in 2050 compared to 2024. 

 

If the reduction trend between 2020 and 2024 continues (21.6% per year) until 2040 for  

the computing energy use for processing will increase 35 times in 2040 compared to 2024. 
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This implies that the average J/computation needs to be improved around 35% per year instead of 21% 

between 2024 and 2050. 

 

From [3], for computing energy use for storage, it is clear that reversible and superconducting are so far 

the only identified technologies identified in the present study which can keep the energy consumption in check. 

 

If the 2020 to 2024 trend continues reversible computing will be achieved in the 2050s, i.e. ≈ 0.182 

zJ/transistor, >10 times below the SNL limit. 

 

Bitcoin could be a considerable user of computing energy at 2700 TWh in 2035 with 20% to sustain the 

network and 80% to mine the coins.  

 

At the end of the day, it will be the physical properties of the microchips that will determine the primary 

energy consumption trend and eco-effectiveness of computing. This may be true even if hardware improvements 

cannot explain why the overall power consumption is increasing. The reason is that the total number of 

computations is dependent on programming language. More use of energy efficient programming languages 

[26],[27] like C - compared to JavaScript - may lead to fewer overall global computations and smaller energy 

consumption. 

Current solutions are not enough to keep computing electricity under control until 2050 with 10 

Ronnacomputations/s. However, the reduction trend keeps on going, and there are promising new technologies 

capable in theory of delivering a silver lining [28]. 

 

V. CONCLUSION  
The J/computation performance of proposed technologies are probably enough to keep the power 

consumption of computing under control until 2030. Moreover, for 2040 and 2050 reversible computing and 

superconducting computing will be required. The preferable comparison metrics in between generation of chips 

ought to be more discussed. 
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